Posts Tagged ‘burial mound’

On Monument Volume IV

April 29, 2013

This post evaluates burial mound volume, fitting various probability models to the data. As noted previously, the exponential distribution seems like an appropriate model to fit to the mound volume data. This model is not the only possibility, of course, so I will also consider an alternative, the gamma distribution. The exponential distribution is a simplified version of the gamma distribution.

The gamma probability density function (pdf) is:

f(x\vert \alpha , \lambda) = \frac{\lambda ^{\alpha} x^{\alpha - 1}e^{- \lambda x}}{\Gamma (\alpha)} ,

where:

\alpha is the shape parameter,

\lambda is the rate parameter,

and \Gamma is the gamma function.

The gamma function typically takes the following form:

\Gamma (\alpha) = \int_{0}^{\infty} t^{\alpha -1} e^{-t} dt

Depending on the parameter values, the graph of the gamma pdf can take a wide variety of shapes, including forms that resemble the bell-shaped curve of the normal distribution. The following illustration shows some of the possible variation.

20130429-205624.jpg

To evaluate the relationship between mound volume and mound condition (plowed and whole) under the gamma and exponential distributions, I analyzed model fit using the maximum likelihood method. The following R code details the analysis.

>library(bbmle)
>mdvol_g.mle=mle2(Allmds$Mound.Volume~dgamma(shape=shape, rate = gvar), start=list(shape = 1, gvar = 1/mean(Allmds$Mound.Volume)), data=Allmds, parameters = list(gvar~Allmds$Condition))
>mdvol_g.mle

>mdvol_e_cov.mle=mle2(Allmds$Mound.Volume~dexp(rate = avar), start=list(avar = 1/mean(Allmds$Mound.Volume)), data=Allmds, parameters = list(avar~Allmds$Condition))
>mdvol_e_cov.mle

>mdvol_e.mle= mle2(Allmds$Mound.Volume~dexp(rate = bvar), start=list(bvar = 1/mean(Allmds$Mound.Volume)), data=Allmds)
>mdvol_e.mle

In this code, Allmds refers to an R data frame containing the variables Mound.Volume and Condition. The code uses the maximum likelihood method to evaluate the fit of an exponential distribution to the data and to estimate parameter values. I performed the analysis three times. In the first analysis, I fit the gamma distribution, using Condition as a covariate. In the second and third analyses, I fit the exponential distribution to the data, once with the covariate Condition and once without the covariate.

The models are “nested”. The gamma distribution can be reduced to the exponential distribution by setting the gamma’s shape parameter to one. The exponential model without the covariate is a simplified version of the model with the covariate. Nested models can be compared using an ANOVA test to see whether the more complex model gives a significantly better fit to the data, justifying the extra complexity. The following two tables show the results of the analysis.

20130503-054055.jpg

20130503-053545.jpg
The initial results suggest that the exponential distribution with the covariate provides a significantly better fit to the data than the simpler model without the covariate. The gamma distribution does not provide a significantly better fit. Notice that the gamma’s shape parameter is estimated to be one, which reduces the gamma to the exponential distribution.

From this preliminary analysis, I offer the following conclusions. The exponential distribution appears to be an appropriate model for mound volume. In addition, plowed mounds may be distinctly smaller than whole mounds, contradicting my initial hypothesis. In subsequent posts, I will consider some archaeological implications and address some additional considerations that may help to explain these results.

© Scott Pletka and Mathematical Tools, Archaeological Problems, 2013.

Advertisements

On Monument Volume III

April 20, 2013

For my study area, the distribution of burial mound volume for plowed and whole mounds looks similar. This distribution is also quite different from the normal distribution that characterizes so many traits in the natural world. The distribution of burial mound volume resembles the form of an exponential distribution. Exponential distributions have a peak at the extreme left end of the distribution and decline steadily and rapidly from that point. The exponential distribution has a single parameter, the rate, typically denoted by \lambda . The following function gives the probability density (sometimes called the pdf) of the exponential distribution.

f(x\vert \lambda) = \lambda e^{-\lambda x}

The pdf defines a curve. For a continuous distribution such as the exponential distribution, the area under this curve provides the probability of a sample taking on the value within the interval along the x-axis under the curve. The following illustration depicts these relationships. In the illustration, the shaded area under the curve represents the probability of a given sample falling between the two values of x.

20130420-193517.jpg

As a check on my intuition regarding the applicability of the exponential distribution, I generated a random sample of 2000 from an exponential distribution with a mean of 500. The following figure shows what such a distribution may look like. The simulation does not provide definitive proof, but it may nevertheless indicate whether a more rigorous analysis that employs the exponential distribution is worth pursuing.

20130420-165656.jpg

At least superficially, the histogram of the simulation results resembles the histograms of mound volume shown in the previous post. This simulation did not produce the apparent outliers seen in the mound data, but the resemblance suggests that burial mound volume can be modeled with an exponential distribution. I thus modeled mound volume with an exponential distribution, using mound condition (plowed or whole) as a covariate. I performed this analysis in R with the bbmle module. In the next post, I’ll present the code and initial results.

© Scott Pletka and Mathematical Tools, Archaeological Problems, 2013.